156 lines
5.2 KiB
YAML
156 lines
5.2 KiB
YAML
|
image:
|
||
|
repository: ghcr.io/mintplex-labs/anything-llm
|
||
|
pullPolicy: IfNotPresent
|
||
|
tag: latest@sha256:fc85952a3d6e9b33f6cd9368ff114c769b24366c06f35800f82490271fa37dbb
|
||
|
securityContext:
|
||
|
container:
|
||
|
readOnlyRootFilesystem: false
|
||
|
runAsUser: 0
|
||
|
runAsGroup: 0
|
||
|
capabilities:
|
||
|
add:
|
||
|
- SYS_ADMIN
|
||
|
|
||
|
service:
|
||
|
main:
|
||
|
ports:
|
||
|
main:
|
||
|
protocol: http
|
||
|
port: 3001
|
||
|
|
||
|
workload:
|
||
|
main:
|
||
|
podSpec:
|
||
|
containers:
|
||
|
main:
|
||
|
env:
|
||
|
SERVER_PORT: "{{ .Values.service.main.ports.main.port }}"
|
||
|
STORAGE_DIR: "{{.Values.persistence.storage.mountPath }}"
|
||
|
# forces users to use ingress if https is needed.
|
||
|
# keep false.
|
||
|
ENABLE_HTTPS: false
|
||
|
JWT_SECRET:
|
||
|
secretKeyRef:
|
||
|
name: anythinglmm-secrets
|
||
|
key: JWT_SECRET
|
||
|
# LLM_PROVIDER='openai'
|
||
|
# OPEN_AI_KEY=
|
||
|
# OPEN_MODEL_PREF='gpt-3.5-turbo'
|
||
|
|
||
|
# LLM_PROVIDER='gemini'
|
||
|
# GEMINI_API_KEY=
|
||
|
# GEMINI_LLM_MODEL_PREF='gemini-pro'
|
||
|
|
||
|
# LLM_PROVIDER='azure'
|
||
|
# AZURE_OPENAI_KEY=
|
||
|
# AZURE_OPENAI_ENDPOINT=
|
||
|
# OPEN_MODEL_PREF='my-gpt35-deployment' # This is the "deployment" on Azure you want to use. Not the base model.
|
||
|
# EMBEDDING_MODEL_PREF='embedder-model' # This is the "deployment" on Azure you want to use for embeddings. Not the base model. Valid base model is text-embedding-ada-002
|
||
|
|
||
|
# LLM_PROVIDER='anthropic'
|
||
|
# ANTHROPIC_API_KEY=sk-ant-xxxx
|
||
|
# ANTHROPIC_MODEL_PREF='claude-2'
|
||
|
|
||
|
# LLM_PROVIDER='lmstudio'
|
||
|
# LMSTUDIO_BASE_PATH='http://your-server:1234/v1'
|
||
|
# LMSTUDIO_MODEL_TOKEN_LIMIT=4096
|
||
|
|
||
|
# LLM_PROVIDER='localai'
|
||
|
# LOCAL_AI_BASE_PATH='http://host.docker.internal:8080/v1'
|
||
|
# LOCAL_AI_MODEL_PREF='luna-ai-llama2'
|
||
|
# LOCAL_AI_MODEL_TOKEN_LIMIT=4096
|
||
|
# LOCAL_AI_API_KEY="sk-123abc"
|
||
|
|
||
|
# LLM_PROVIDER='ollama'
|
||
|
# OLLAMA_BASE_PATH='http://host.docker.internal:11434'
|
||
|
# OLLAMA_MODEL_PREF='llama2'
|
||
|
# OLLAMA_MODEL_TOKEN_LIMIT=4096
|
||
|
|
||
|
# LLM_PROVIDER='togetherai'
|
||
|
# TOGETHER_AI_API_KEY='my-together-ai-key'
|
||
|
# TOGETHER_AI_MODEL_PREF='mistralai/Mixtral-8x7B-Instruct-v0.1'
|
||
|
|
||
|
# LLM_PROVIDER='mistral'
|
||
|
# MISTRAL_API_KEY='example-mistral-ai-api-key'
|
||
|
# MISTRAL_MODEL_PREF='mistral-tiny'
|
||
|
|
||
|
# LLM_PROVIDER='huggingface'
|
||
|
# HUGGING_FACE_LLM_ENDPOINT=https://uuid-here.us-east-1.aws.endpoints.huggingface.cloud
|
||
|
# HUGGING_FACE_LLM_API_KEY=hf_xxxxxx
|
||
|
# HUGGING_FACE_LLM_TOKEN_LIMIT=8000
|
||
|
|
||
|
# EMBEDDING_ENGINE='openai'
|
||
|
# OPEN_AI_KEY=sk-xxxx
|
||
|
# EMBEDDING_MODEL_PREF='text-embedding-ada-002'
|
||
|
|
||
|
# EMBEDDING_ENGINE='azure'
|
||
|
# AZURE_OPENAI_ENDPOINT=
|
||
|
# AZURE_OPENAI_KEY=
|
||
|
# EMBEDDING_MODEL_PREF='my-embedder-model' # This is the "deployment" on Azure you want to use for embeddings. Not the base model. Valid base model is text-embedding-ada-002
|
||
|
|
||
|
# EMBEDDING_ENGINE='localai'
|
||
|
# EMBEDDING_BASE_PATH='http://localhost:8080/v1'
|
||
|
# EMBEDDING_MODEL_PREF='text-embedding-ada-002'
|
||
|
# EMBEDDING_MODEL_MAX_CHUNK_LENGTH=1000 # The max chunk size in chars a string to embed can be
|
||
|
|
||
|
# Enable all below if you are using vector database: Chroma.
|
||
|
# VECTOR_DB="chroma"
|
||
|
# CHROMA_ENDPOINT='http://host.docker.internal:8000'
|
||
|
# CHROMA_API_HEADER="X-Api-Key"
|
||
|
# CHROMA_API_KEY="sk-123abc"
|
||
|
|
||
|
# VECTOR_DB="pinecone"
|
||
|
# PINECONE_API_KEY=
|
||
|
# PINECONE_INDEX=
|
||
|
|
||
|
# VECTOR_DB="lancedb"
|
||
|
|
||
|
# VECTOR_DB="weaviate"
|
||
|
# WEAVIATE_ENDPOINT="http://localhost:8080"
|
||
|
# WEAVIATE_API_KEY=
|
||
|
|
||
|
# VECTOR_DB="qdrant"
|
||
|
# QDRANT_ENDPOINT="http://localhost:6333"
|
||
|
# QDRANT_API_KEY=
|
||
|
|
||
|
# VECTOR_DB="milvus"
|
||
|
# MILVUS_ADDRESS="http://localhost:19530"
|
||
|
# MILVUS_USERNAME=
|
||
|
# MILVUS_PASSWORD=
|
||
|
|
||
|
# VECTOR_DB="zilliz"
|
||
|
# ZILLIZ_ENDPOINT="https://sample.api.gcp-us-west1.zillizcloud.com"
|
||
|
# ZILLIZ_API_TOKEN=api-token-here
|
||
|
|
||
|
# VECTOR_DB="astra"
|
||
|
# ASTRA_DB_APPLICATION_TOKEN=
|
||
|
# ASTRA_DB_ENDPOINT=
|
||
|
|
||
|
# AUTH_TOKEN="hunter2" # This is the password to your application if remote hosting.
|
||
|
# DISABLE_TELEMETRY="false"
|
||
|
|
||
|
# Documentation on how to use https://github.com/kamronbatman/joi-password-complexity
|
||
|
# Default is only 8 char minimum
|
||
|
PASSWORDMINCHAR: 8
|
||
|
PASSWORDMAXCHAR: 250
|
||
|
PASSWORDLOWERCASE: 1
|
||
|
PASSWORDUPPERCASE: 1
|
||
|
PASSWORDNUMERIC: 1
|
||
|
PASSWORDSYMBOL: 1
|
||
|
PASSWORDREQUIREMENTS: 4
|
||
|
|
||
|
persistence:
|
||
|
storage:
|
||
|
enabled: true
|
||
|
mountPath: "/app/server/storage"
|
||
|
hotdir:
|
||
|
enabled: true
|
||
|
mountPath: "/app/collector/hotdir"
|
||
|
outputs:
|
||
|
enabled: true
|
||
|
mountPath: "/app/collector/outputs"
|
||
|
|
||
|
portal:
|
||
|
open:
|
||
|
enabled: true
|